Could DNA vaccines be the next tool in the world's battle against COVID-19?

AuthorMAAYAN JAFFE-HOFFMAN
Published date26 September 2021
Publication titleJerusalem Post, The: Web Edition Articles (Israel)
The vaccine, developed by a company called Zydus Cadila, expects to have it available for use as early as next month, giving hope to a country that has suffered more than 447,000 deaths at the hand of the virus.

What is a DNA vaccine and could this new class of vaccination become the next tool in the world's fight against COVID-19?

cnxps.cmd.push(function () { cnxps({ playerId: '36af7c51-0caf-4741-9824-2c941fc6c17b' }).render('4c4d856e0e6f4e3d808bbc1715e132f6'); });

>

A DNA vaccine is a form of a software vaccine, explained Tel Aviv University's Prof. Jonathan Gershoni.

A software vaccine is one in which scientists vaccinate with the blueprint of the virus – just the DNA or the RNA corresponding to the genes that code for the spike protein – injecting it in a palatable and effective way into the body. The cells then synthesize the viral protein, which leads to the production of antibodies against the viral spike.

This is as opposed to a hardware vaccine, which actually contains hardware, that is physical bits and pieces of the virus protein.

"You can have a hardware vaccine that consists of a killed virus, for example, or an attenuated virus," Gershoni explained. "Or you can have a subunit vaccine as well, such as the vaccine for Hepatitis B, which is just purified spike protein.

"The immune system identifies the presence of the viral protein… and that stimulates the immune system to respond and make highly specific targeted antibodies that inactivate the virus."

All of the traditional childhood vaccines that exist today are hardware vaccines.

However, since the late 1980s, scientists began playing with the idea that there could be applications for injecting DNA or RNA directly – first, in trying to develop gene therapy, and more recently, in the development of what Gershoni calls software vaccines.

"We know that the information flow in biology goes like this: the genetic material is stored in a very stable molecule, double-stranded DNA," Gershoni said. "However, the information that flows from the gene needs to be transcribed to create a disposable and intermediate genetic material in the form of RNA. So, RNA in the traditional sense, is simply a disposable copy of the DNA gene."

However, it is the RNA and not the DNA that is able to interact with the protein manufacturing machinery, known as ribosomes. The ribosomes are what recognize the RNA and systematically translate the genetic material, which is written in the language of RNA, into the hardware –...

To continue reading

Request your trial

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT